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Abstract—We propose SparsePipe, an efficient and asyn-
chronous parallelism approach for handling 3D point clouds
with multi-GPU training. SparsePipe is built to support 3D
sparse data such as point clouds. It achieves this by adopting
generalized convolutions with sparse tensor representation to
build expressive high-dimensional convolutional neural networks.
Compared to dense solutions, the new models can efficiently
process irregular point clouds without densely sliding over the
entire space, significantly reducing the memory requirements and
allowing higher resolutions of the underlying 3D volumes for
better performance.

SparsePipe exploits intra-batch parallelism that partitions
input data into multiple processors and further improves the
training throughput with inter-batch pipelining to overlap com-
munication and computing. Besides, it suitably partitions the
model when the GPUs are heterogeneous such that the computing
is load-balanced with reduced communication overhead.

Using experimental results on an eight-GPU platform, we
show that SparsePipe can parallelize effectively and obtain
better performance on current point cloud benchmarks for both
training and inference, compared to its dense solutions.

Index Terms—asynchronous distributed training, model par-
allelism, load balancing, sparse DNN, 3D point clouds

I. INTRODUCTION

Point clouds are captured by 3D scanners, light detection

and ranging (LiDAR), structure-from-motion (SFM) tech-

niques, and recently available 3D sensors, such as Kinect and

Xtion [1]. Point clouds are used widely in various applications

such as virtual reality, 3D gaming, and digital preservation.

There is an increasing interest in applying deep learning

approaches to point cloud data [2]–[4]. Point clouds usually

have a sparse point density, especially when compared to the

continuous actual surface. In many of the current approaches, a

preprocessing step (e.g,. dense image matching [5]) is thereby

applied that transforms the point clouds into dense tensors.

Subsequently, the dense tensors are processed using deep

learning models where the core operations are a set of the

regular dense convolutions. Another approach to applying

convolution to point clouds quantizes the entire space into 3D

voxels and then densely convolves them in a sliding window

fashion [6].

Unfortunately, converting the point clouds into 3D dense

tensors results in a large memory footprint and additional com-

putations. Further, using data-parallel pipelining approaches

to speed up the training processes would replicate the dense

model to each processor. Overall, this results in high memory

requirements for the weight matrix and corresponding syn-

chronization costs to collect all gradients, update the weight

matrix, and redistribute to each processor. In addition to the

above, there are additional practical challenges. Due to the

unstructured nature of point clouds, constructing convolutions
for point clouds requires expensive nearest neighbor search

such as KD-Tree or Ball Query. This makes it nontrivial to

integrate point cloud models into existing dense computation

frameworks, which partially explains why most point cloud

models (e.g., dense 3D convolution [6], PointNet-variants [3],

[4]) are shallow models with few layers.

In this paper, we develop SparsePipe, which addresses

many of the above limitations. It supports storage of data

using a sparse tensor representation and generalized convo-

lutions for handling 3D point clouds. Using sparse models

is both memory and computation efficient and enables us to

solve larger problems with higher voxelization resolutions and

deeper models. Additionally, it provides fast parallelization

of these representations on a heterogeneous cluster of GPU

processors as compared to naive data parallelism. To the best

of our knowledge, this is the first work that addresses sparse

computation frameworks on multiple GPUs with pipeline

model parallelism.

The SparsePipe has the following key contributions:

1) It uses sparse tensor representation for processing 3D

point clouds that has a relatively small memory footprint

as compared to dense approaches.

2) It integrates model parallelism with data parallelism

and processes mini-batches in a pipelined fashion. The

parallelization algorithms in SparsePipe are based on

PipeDream [7] and SpecTrain [8], which are limited for

dense models.

3) It incorporates a load-balancing step that is aware of the

underlying platform and exploits differential GPU char-

acteristics by suitably partitioning the overall pipeline.

Overall, this results in both effective utilization of the underly-

ing parallelization and computation resources while supporting

much larger 3D datasets due to a smaller footprint. It achieves

higher accuracy compared to dense baselines for shape clas-

sification. Compared to data-parallel training, SparsePipe is

faster while maintaining high accuracy.
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II. BACKGROUND

A. DNN Model Training
A deep neural network (DNN) model consists of multiple

consecutive layers. The goal of training the DNN model is to

find its optimal set of parameters (weights) w that can min-

imize the sum of the objective function for training samples

with labels. This is commonly accomplished using stochastic
gradient descent (SGD) [9]. This approach computes the

weight updates, i.e., gradients, on a given mini-batch (a subset

of training samples) and updates the weight w. The size of the

mini-batch is chosen based on convergence and processing

requirements. The training is decomposed into forward and

backward. The forward computation makes predictions of

given samples, and each layer computes its activations to

be fed into the next layer given its current input and layer

parameters. The backward computation computes the loss in

the end layer and backpropagates it through all layers. The

gradients for each layer (including its inputs and weights) are

estimated using gradients from upper layers and previously

computed layer activations. The SGD optimizer then updates

the model parameters based on these gradients.
Parallel computing algorithms that have been successfully

applied to speed up the DNN model training, which mainly

contains two broad classes: intra- and inter-batch parallelism.

The advantages and limitations of these approaches are de-

scribed in the following subsections.

B. Intra-batch Parallelism
The intra-batch parallelism splits a single training iteration

across processors. Two popular types of intra-batch processing

are widely adopted in distributed deep learning frameworks:

data parallelism (DP) and model parallelism (MP).
Data Parallelism. DP is the most common approach,

in which a model is replicated and distributed to multiple

processors such that each model handles a subset of the

input dataset. The forward- and backward-computations are

performed at each processor. Weight updates are aggregated

by communicating and synchronizing between processors to

obtain a final weight update. The amount of data commu-

nicated between processors is therefore proportional to the

size of the model. Data parallelism is the most popular and

practical way of performing distributed parallel training due

to its flexibility and wide support across popular deep learning

frameworks such as PyTorch [10], TensorFlow [11], and Caffe

[12]. For large models, the communication overhead can be

high because the weights are replicated across processors and

they have to be updated frequently. This overhead increases as

the number of processors increases. Even with the use of high-

performance communication libraries such as the NVIDIA

Collective Communications Library (NCCL), communication

overhead can be as large as 85% of training time for the

convolutional neural network model VGG16 [13]. Other op-

timization approaches have been used for DP: asynchronous

parallelism for hardware efficiency [14], gradient quantization

for reducing sizes of data to be communicated between pro-

cessors [15], and specialized network hardware for reducing

communication overheads. These methods are complementary

to DP. Recent approaches follow layer-wise adaptive rate

scaling (LARS) [16] for training models effectively with large

mini-batches, which reduces the communication overhead with

fewer parameters exchanged.
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Model Parallelism. MP partitions a model among proces-

sors so that each processor only updates a subset of the model

weights. Compared to data parallelism, model parallelism

reduces data communication by sharing intermediate outputs

(and the corresponding gradients). However, vanilla MP is

rarely adopted in practical due to several major limitations. As

illustrated in Fig. 1, it suffers from under-utilization of GPU

accelerators. The data dependency (including activations and

gradients) between processors will make only one processor

active while stalling others at the same time. Moreover, MP

highly relies on a proper model partitioning to have similar

throughput for all the sub-models to avoid any GPU under-

utilization, and obtaining an optimal partitioning is non-trivial.

Heuristic partitions by programmers usually obtain point so-

lutions that are far from the optimal ones.

Hybrid Intra-batch Parallelism. A natural extension is to

partition a model while regarding both DP and MP. FlexFlow

[18] introduced a novel execution similar to finding a fast

parallelization strategy to split one iteration. Krizhevsky’s

OWT (”one weird trick”) [19] explored the AlexNet model

and conducted data parallelism for convolutional layers while

choosing not to replicate fully connected layers with a large

number of model parameters. We refer the interested reader

to [20] for a detailed review.
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C. Inter-batch Parallelism

The inter-batch parallelism tries to parallelize the compu-

tation across multiple batches. Most of them use the pipeline

parallel (PP) paradigm to address the limitations of MP and DP

approaches [7], [17], [21]. Instead of just one input, multiple

inputs are injected into a computation pipeline. This ensures

a better schedule that reduces waiting time and improves the

utilization of computing resources (Figs. 2 and 3).

To address the low GPU-utilization in naive model par-

allelism, GPipe [17] starts by splitting mini-batch training

samples into smaller micro-batches, which allows a finer-

grained training unit. GPipe trains these training units in a

pipeline fashion, which, to some extent, allows a concurrent

training on multiple GPUs, thus significantly improving the

GPU utilization. GPipe is considered to be a synchronous par-

allelism where the micro-batches are processed sequentially,

which inevitably causes some bubble overheads. To maintain

the model accuracy, a single version of model weights is

maintained, and the model’s weights are periodically updated

(flushed) during the pipeline training.

Asynchronous parallelism [22] techniques are used to im-

prove the GPU utilization with asynchronous weight update

immediately after sufficient gradients are accumulated. It al-

lows each processor to proceed with the next input minibatch

before receiving the gradients from the previous minibatch

thus overcoming the low device-utilization of the naive model

parallelism, as shown in [7]. However, applying this to the

naive pipelined system will encounter the problem widely

referred to as the weight inconsistency, due to the fact that each

processor sees two mismatched model parameters of the same

mini-batch samples during its forward and backward passes.

This discrepancy in weights can prevent model convergence.

To address this issue, PipeDream [7] proposed the weight
stashing technique to mitigate the weight discrepancy issue

and ensure that the same version of model parameters is used

for each mini-batch sampling within a stage. The vertical
sync is provided as well for solving inconsistency of model

parameters across stages. Still, PipeDream suffers from the

weight staleness issue where different versions of weights are

used across all training iterations, which is partly addressed

in SpecTrain [8] via weight prediction. The weight prediction

is based on the observation that gradients are smoothed in

a momentum-based optimizer. Therefore, future weights can

be potentially predicted in early pipeline stages to replace the

stale weights presented in current PipeDream.

D. 3D Point Cloud Processing

Models with 3D Convolutions. One conventional approach

for processing 3D point clouds is to adopt volumetric repre-

sentation. The early work uses a rectangular grid or dense

representation that represents the space either as 0/1 or the

signed distance function (SDF), followed by 3D convolutional

neural networks (3D CNNs). Huang and You [23] introduced

a labeling scheme using a simple 3D CNN network for point

cloud processing. Given a big point cloud and a center point,

they set up a cubic bounding box with a defined radius around

the center reference point. The model divides the cube into

a grid of cells, which are further transformed into voxelized

occupancy grids. The label for each voxel is inferred using a

voting scheme.

All major public neural network frameworks can support 3D

CNN operators based on this straightforward representation.

However, they suffer from expensive computation and high

memory consumption, which limits their use to processing

of point clouds at a very coarse resolution (typically on

the order of 32 × 32 × 32). The inefficient dense sliding

window techniques for 3D CNNs further limit the receptive

field of a model because only shallow models with fewer

layers are applicable. To mitigate these issues, the octree

representation is incorporated into the volumetric CNNs [24].

A potentially more viable approach is based on the use of

pseudo-convolutional neural networks where the key idea is

to define convolutions using continuous kernels, assuming a

continuous space for point clouds. The major limitation is an

expensive nearest neighbor search for the kernels, even with

an efficient implementation of KD-Tree. Fortunately, sparse

3D CNNs have received more attention because of only non-

empty locations with a small percentage of the entire space

needing to be processed. Several frameworks (such as Spar-

seConvNet [2] and MinkowskiEngine [25]) can compute the

sparse CNNs based on the efficient indexing structure. Other

alternative solutions, e.g., sparse blocks network (SBNet) [26],

are available as well.

Models without 3D Convolutions. Deep learning models

have been proposed to process point clouds without 3D

convolutions. In [27], the authors conducted 2D convolutions

directly on the surfaces for segmentation. PointNet [3] directly

treats a set of point coordinates as features and applies a

multilayer perceptron, followed by permutation-invariant oper-

ators (e.g., the global max-pooling layer) to obtain the global

features for the classifier. The major limitation of PointNet

is that it does not capture local structure, which an important

facet of the success of convolutional architectures. PointNet++

[4] introduced a hierarchical neural network that can partition

points into overlapped local regions and extract local features

accordingly via a mini-PointNet. Later, many model variants

further improved the performance with more advanced abstract

layers for extracting local structure.

III. SPARSEPIPE

In this section, we introduce the pipeline parallel framework

SparsePipe. This leverages state-of-the-art parallel comput-

ing frameworks presented in PipeDream [7] that have been

developed for dense data processing (e.g., 2D images). We

handle sparse 3D data (in particular point clouds) by building

expressive high-dimensional convolutional neural networks.

The details of the integration with sparse tensors and the

generalized convolutions are presented. Finally, we present a

model partitioning algorithm that automatically partitions the

model layers among different types of processors, with the

goal to keep the load as balanced as possible.
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Fig. 4: Hybrid pipeline model parallelism with 3 processors

and 2 stages. Stage 1 takes twice of the time units than stage 2

in the forward or backward pass. To sustain roughly the same

throughput of stage 2 (on proc 3), stage 1 is replicated on two

processors (proc 1 and 2).

A. Pipeline Model Parallel

In Section II-C, we have briefly introduced the pipeline

parallelism and its two main applications: GPipe [17] and

PipeDream [7]. In this section, the asynchronous pipeline

model parallelism utilized in PipeDream is introduced in a

more detailed way since SparsePipe leverages this pipeline

parallel approach and presents several improvements.

Pipeline parallelism of the underlying model partitions the

DNN models into several stages, with each stage containing a

continuous chunk of model layers. In PipeDream, each stage

can be assigned to one GPU or multiple GPUs. Fig. 3 gives

an example of the data computation among four GPUs with

PipeDream, where each GPU takes charge of one stage. The x-

axis represents time, where we assume backward computation

takes twice the amount of time as the forward computation. In

the warm-up stage, the processor in stage 1 starts the training

by forwarding multiple mini-batches in a row to ensure enough

workloads in the pipeline. In the steady state, each GPU

performs one forward computation followed by one backward

computation. The weight version used for computing the

forward pass and backward pass of one mini-batch is different

if applying naive pipeline parallelism. For example, in stage

1, the forward computation of mini-batch 5 is performed right

after the weights are updated by mini-batch 1, whereas the

backward computation of mini-batch 5 is conducted with the

weights updated by mini-batch 2, 3, and 4. PipeDream uses a

technique called weight stashing, which stores the old weights

and applies them during the backward computation to the

mini-batches using the same weight as in the forward pass,

which mitigates the weight discrepancy and guarantees the

same weight version for each mini-batch in one stage.

Additionally, PipeDream provided a hybrid pipeline model

parallelism that combines the data parallel and pipeline model

parallel (Fig. 4). The DNN model is partitioned into 2 stages,

with the first stage replicated among two GPUs. This part is

done by integrating PyTorch’s Distributed Data Parallel library

[10]. A deterministic round-robin strategy is used to distribute

the intermediate results from the previous duplicated stage

to the next stage. This is calculated based on the mini-batch

ID and the number of replicas in the current and next stage.

Although simple, it guarantees every mini-batch is calculated

in the same way during the forward and backward passes,

which is necessary for the saved parameters and intermediate

results applied during the backward calculation.

Dense Tensor Sparse Tensor

Fig. 5: Visualization of the convolution operators conducted

on dense and sparse tensors. Blue and green denote the

input and out feature maps, respectively. Gray indicates the

convolutional kernel. It will densely slide over the entire space.

On a sparse tensor, the convolution is instead only conducted

on a few specified locations.

SparsePipe leverages the asynchronous pipeline model par-

allelism shown above. It also incorporates the naive data

parallelism. This can be viewed as the DNN model partitioned

into one stage which is replicated among multiple GPUs.

B. Extension to Sparse Data

Prior work on parallelization of deep networks [7], [17] has

shown its benefits by speeding up training for dense tensor

processing (e.g., 2D images) where the core operations are

the regular dense convolutions with features represented using

dense formats. Dense representations are not efficient for 3D

point cloud data because much of the spatial volume is empty

and has no features. Hence, these approaches are not very

useful. We now describe our approach that leverages sparse

tensor-based generalized convolutions.

Sparse tensors [25] (unlike their dense counterparts) only

save the non-empty part of the space thus resulting in a

compact representation. We represent data with the sparse

tensor, which represents as follows:

C =

⎡
⎢⎢⎢⎣

b1 x1 y1 z1
b2 x2 y2 z2

...
...

bN xN yN zN

⎤
⎥⎥⎥⎦ , F =

⎡
⎢⎢⎢⎣

fT1
fT2
...

fTN

⎤
⎥⎥⎥⎦ (1)

where C of size (N,Dc+1) represents the coordinates matrix

and F of size (N,Df ) denotes its corresponding feature

matrix. N is the total number of points in batches; Dc and

Df are the coordinate and feature dimensions. Each row in

coordinate matrix C stands for a point location, with bi being

the batch indices of i points that are used to distinguish points

at the same location in different batches, and (xi, yi, zi) is

the point coordinates. The feature matrix F contains a set of

features with fj at j-th row being the feature vector located at

(bj , xj , yj , zj) in C. This sparse tensor representation can be

extended to 4D or higher dimensions.

The sparse tensor convolution generalizes and extends dense

convolution computation [10], [25]. The visualization of the
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Fig. 6: An overview of the heterogeneous-aware pipeline model partition algorithm for sparse-tensor-based computation. Given

an input sparse DNN, we profile the computation time, communication time, and parameter sizes for layers, from which we

compute the accumulated layer costs ratio (ALCR), with increasing layer IDs. Our method measures across multiple machines

with GPU processors that are heterogeneous. We then aggregate all profiles and use a dynamic programming algorithm to

obtain feasible model partition that divides the whole model into sub-models and distributes to processors. For simplicity, we

omit drawings of all intermediate layers (e.g., batch normalization, pooling, or activation layers) between SparseConv blocks

of the Sparse DNN.

dense tensor and sparse tensor convolution is presented in

Fig. 5. Denote by xin
u ∈ RN in

the N in-dimensional input feature

vector at the point u ∈ RD (a D-dimensional coordinate),

and W ∈ RKD×N out×N in

the convolutional kernel weights,

which is split into spatial weights with KD matrices of size

N out × N in as Wi. The conventional dense convolution is

defined as:

xout
u =

∑
i∈VD(K)

Wix
in
u+i for u ∈ ZD, (2)

where VD(K) is the list of offsets centered at the origin.

e.g., V1(3) = {−1, 0, 1}. ZD indicates that the convolution

is conducted in the entire space by densely sliding over all

positions. However, it is likely that neighboring locations of

certain points are empty without any features, which implies

a waste of computation on meaningless locations. Therefore,

we can generalize Eq. 2 with Eq. 3, which is defined as:

xout
u =

∑
i∈ND(u,Cin)

Wix
in
u+i for u ∈ Cout (3)

where ND is a set of offsets that define the shape of a kernel.

ND(u, Cin) = {i|u + i ∈ C in, i ∈ ND} is the set of offsets

from the current center, u, which can be arbitrarily defined

to describe the shape of the convolutional kernels. Notice that

the computation is only carried between Cin and Cout that are

non-empty locations.
During the implementation of the generalized sparse convo-

lution, three steps are involved: 1) Generate the output coordi-

nates Cout when the input coordinates C in, the convolution layer

stride size, the input sparse tensor stride size are given [25];

2) Establish the mapping relationship between the input and

output coordinates for each kernel weight Wi used to link the

inputs, the kernel weights, and the outputs; 3) Conduct the

computation of Eq. 3 by iterating the kernel weights over all

corresponding input-to-output mappings and input features.

The extra overhead of Eq. 3 compared to Eq. 2 is the need

of constructing and maintaining the mapping relationship in

step 2. This involves extensive insertions as well as search and

can become the main bottleneck when the number of points

is huge. In this paper, it is implemented using a GPU-based

hashmap which reduces the overhead.

Pipeline Parallelism with SparseDNN. Existing parallel

approaches can only support dense tensor computing, which

inevitably results in high memory requirements. In SparsePipe,

we instead aim at conducting sparse computations across

multiple GPU processors while partitioning the DNN model

to different GPU processors. The generalized convolution op-

erations (Eq. 3) are computed to send the intermediate results

immediately to the next stage during the forward computation

while collecting results during the backward computation as

described in Section III-A.

To meet the above requirements, efficient communication

functions specified to sparse tensor are implemented, by

adopting Pytorch Distributed Parallel Library [28]. The inter-

GPU communication is implemented with the Gloo distributed

communication package by exchanging essential information

for representing sparse tensor (namely the coordinate matrix

and feature matrix). Similar to PipeDream [7], round-robin

scheduling is adopted to make sure gradients computed in the

backward pass are routed to the corresponding processor from

the forward pass, which guarantees consistent computing for

a single round of forward-backward passes.

SparsePipe incorporates the latest Pytorch [10] and

MinkowskiEngine [25]. There exist many other alternative

frameworks for conducting sparse computation, including, but

not limited to, SparseConvNet [2] and SpConv1. We are

planning to release our SparsePipe implementation to facilitate

the research in this direction.

1https://github.com/traveller59/spconv
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C. Partitioning for Heterogeneity

Like other pipelining approaches, the throughput of

SparsePipe is determined by its slowest stage. Vastly different

throughputs for stages will result in potential bubbles leading

to load imbalance and resource under-utilization. Naive model

partitions that are heuristically determined by the practitioners

are often point solutions, which are difficult to obtain a

balanced partition. The partitioning approach of PipeDream

[7] assumes that the GPUs or servers used in the pipeline are

homogeneous. This is generally not the case because clusters

grow organically and consist of a wide variety of GPUs due

to the short release cycle of new GPU architectures. Pipe-

torch [29] proposes a model partitioning algorithm suitable

for different network bandwidths.

In the following, we will present a heterogeneous-aware

pipeline model partition algorithm (Fig. 6) that achieves load

balance based on the heterogeneous GPUs, where “hetero-

geneous” refers to the configuration of GPUs with different

computational abilities.
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Fig. 7: The accumulative layer cost ratio (ALCR) of compute

time, activation size and parameter size for each layer of

VGG16-BN model on Titan XP.

Workflow of SmartProfile. Before partitioning the model,

we need to derive the time incurred by each layer. SparsePipe

assumes that the computational time during the model training

remains the same for different runs in the same machine. Thus,

a profiling script (SmartProfile) is utilized to estimate each

DNN layer’s computation and communication cost on different

types of GPUs. This helps the partition algorithm generate

a reasonable work partition and layer assignment. It begins

with collecting a set of configurations such as batch size, GPU

configurations, and model types, followed by a warmup stage

to keep GPUs busy before the actual profiling. The warmup

is done by running 50 iterations of DNN training. Another

100 iterations are added in the profile stage to record logs

of each model layer and dump to text files, which consists

of the total computation time (of both forward and backward

computation), activation size, and weight parameter size.

For multiple GPU training, we will run this profiling inde-

pendently on each GPU with a different computational ability.

The partition algorithm will take all the records obtained from

all types of GPUs, together with other information such as

bandwidth, number of workers, and output a feasible model

partitioning solution including 1) the layer-to-stage assignment

and 2) the number of workers for each stage.
One visual example of the profiling is demonstrated in

Fig. 7, where we accumulate the computational time, pa-

rameter sizes, and activation sizes over layer indexes of the

VGG16 [13] with batch normalization [30] (VGG16-BN)

model on one Titan XP device. We observe that most of the

computation comes from early layers with larger activation

sizes whereas later layers have more weight parameters.
Overhead of SmartProfile. While training deep learning

models usually takes hours or days (e.g., roughly 8/3 hours

of training for Dense/Sparse DNN in our experiments), the

overhead of running the profiler is much smaller and it could

finish in 5 minutes for one GPU type (about 1% - 3% of the

training time). Multi-GPU training will repeat the profiling on

each GPU type thus slightly increasing the overhead. Besides,

this partitioning is only a one-time configuration for a model.
SparsePipe extends from the profiler in PipeDream regard-

ing a different workload distribution. In PipeDream, they

assume all the GPUs are of the same type. However, this is not

always the case in reality. Our SparsePipe instead considers the

heterogeneity that GPUs used during the training might have

different computational abilities. SparsePipe can balancedly

distribute the work among varying types of GPUs thus making

the time spent by each GPU about the same. This minimizes

the idling time and achieves more effective load-balancing and

better speedups than PipeDream. The workload partition and

distribution of SparsePipe works as follows.
To load balance the model partitioning, we need to divide

it into stages such that each stage has similar execution time

(or throughput) and the communication overhead is minimized

across stages. SparsePipe (just like PipeDream) allows repli-

cating stages on multiple processors, therefore, being able to

speed up the slowest stage of the pipeline. The overall model

partition is now formulated: Given a DNN model of L layers

and a set of M heterogeneous GPU processors, the goal is

to partition the model and assign the partitions to GPUs, such

that the total computational time in one iteration is minimized.

Formally, let S(n) denote a set with a cardinality of n, whose

elements come from GPU identified as {1, 2, .., n}. Denote by

C(i, j, S(n)) the time taken by the slowest stage in the pipeline

from layer i to layer j using a processor set S(n). The goal

of the algorithm is to find C(0, L,S(M)), the corresponding

partition stages, and GPU assignments.
To obtain the solution, let Q(i, j, S(m)) represent the overall

time taken by a single stage ranging from layer i to j replicated

over processor set S(m). Q includes both the computation and

parameter synchronization time and thereby can be computed

as:

Q(i, j, S(m)) =
1

m
( max
a∈S(m)

j∑
l=i

tla +
2(m− 1)

∑j
l=i p

l

BW
), (4)

where tla refers to the computational time of layer l on

processor a, which belongs to set S(m). pl refers to the weight
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Algorithm 1 Hete-aware pipeline model partition algorithm

1: get the profiling results of each GPU with different com-

putational time

2: sort GPUs, and store as gpu list
3: // initialize data parallel time as the baseline time

4: obtain the data parallel time dp comp from layer i to layer

j (i <= j) with a range of GPUs in gpu list by calling

GetCompTime in Algorithm 2

5: // Get the minimum pipeline partition time

6: Initialize min pipe as a 3D array with initial value from

dp comp
7: for i = 0, L do
8: for j = i+1, L do
9: for m = 0, length(gpu list) do

10: for k = i, j do
11: get the minimum stage time from layer i

to k with gpu list[: m1] from min pipe[i][k][m1], m1 ∈
[0,m]

12: get the minimum stage time from layer k+1

to j with gpu list[m1 : m] by calling GetCompTime in

Algorithm 2

13: get the communication time between layer

k to k + 1
14: get the maximum time of the above three

numbers as the possible solutions to stage ranging from

layer i to j with m GPUs

15: end for
16: find the minimum time mini comp from the

above possible solutions

17: if mini comp < min pipe[i][j][m] then
18: update mini pipe[i][j][m] and the split po-

sition k
19: end if
20: end for
21: end for
22: end for
23: return min pipe

parameter size for layer l, BW is the bandwidth among GPUs.

The first term refers to the total computational time for all

layers in this stage. Because of the heterogeneous GPUs, the

computational time is determined by the slowest processor in

set S(m). The second term stands for the communication time

needed when synchronizing the weight parameters with the

current stage, where we used an efficient all reduce collective

communication [7].

The problem of determining the minimum pipeline time,

C(i, j, S(M)), can now be divided into sub-problems consist-

ing of a minimum sub-pipeline of the time from layer i to k
using a processor set S(N), followed by a stage from layer

k + 1 to j with the remaining M −N processors, which we

denote as S(M −N) for simplicity. This can be expressed as

Algorithm 2 GetCompTime function called by Algorithm 1

Input: Layer i, Layer j, GPU list mList
Output: The data parallel time from layer i to layer j using

machines mList
1: function GETCOMPTIME(i, j, mList)
2: Get the slowest GPU among mList, named mSlow
3: Get the total computational time from Layer i to Layer

j on GPU mSlow, assign to compSum
4: Get the total parameter size from i to j, named

paraSum
5: m = number of GPUs in mList
6: Estimate the communication time of paraSum among

m GPUs, assigned as commTime
7: return sum(compSum, commTime)/m
8: end function

the following equation:

C(i, j, S(M)) = min
i≤k<j

min
S(N)⊂S(M)

max(C(i, k, S(N)),

ak
BW

,Q(k + 1, j, S(M −N))),
(5)

where ak

BW is the communication time between these two

stages, with ak defining the activation size between layer k
and k + 1 that is obtained during profiling. This problem can

be solved using dynamic programming and backtracking.

Through recursion, the problem of obtaining the solution

from layers i to j with GPU set S(M) has been converted to

a relatively smaller problem of obtaining two solutions from

layer i to layer k with a subset of S(M) and from layer k+1 to

j with the remaining GPUs in set S(M), where k is between

i and j. To figure out the optimal configuration, we need to

partition the processor set into two subsets and try all the

possible combinations, which is O(2n). A simple approach

trying all options would potentially require non-polynomial

time. We use a simple but effective heuristic that is based

on sorting the processors using computational capability. Our

approach has two advantages: 1) The GPUs, that assigned

to the same stage with consecutive layers, are generally

homogeneous - this guarantees load balancing among GPUs

thereby improving the computation efficiency, and 2) the

number of choices is now limited to O(n). For example, with a

GPU list of [m1,m2,m3,m4], we only consider the possible

solutions of ([m1], [m2,m3,m4]), ([m1,m2], [m3,m4]), and

([m1,m2,m3], [m4]). That is what we did in our experiments.

Our results in Fig. 9 demonstrate that this is an effective

heuristic. We plan to investigate other heuristics for finding

optimal partitioning as well.

The heterogeneous-aware pipeline model partitioning al-

gorithm is shown in Algorithm 1. Our algorithm begins

with obtaining the forward and backward computational time

with each layer on each GPU type by calling the profiling

script. Then the GPU set S(M) is sorted according to the

heuristic strategy mentioned above, and this is the order of

GPUs used during model partition. After that, the data-parallel

computational time is computed, which serves as a baseline
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solution. At last, the problem of getting the pipeline time

C(i, j, S(M)) is obtained by recursively calculating the sub-

pipelines. Algorithm 2 shows how to get the total data-parallel

time regarding the GPU list. In the data-parallel, the weight

parameters need to be synchronized during every iteration;

therefore, the computational time is determined by the last

GPU finishing the computation.

Discussion: The main improvements of SparsePipe over

PipeDream are the following: 1) We support heterogeneous

platforms that consist of GPUs with different computational

powers, 2) We extend to sparse computations while achieving

lower memory overhead and better speed-accuracy tradeoffs.

The latter is extremely important to 3D data processing.

IV. EVALUATION

This section evaluates the effectiveness of our proposed

SparsePipe framework on two server clusters. These results

show that a combination of pipelined model parallelism and

data parallelism is superior to using only data parallelism.

The accuracy of SparsePipe machine learning models have

comparable or better accuracy than the dense counterparts.

Additionally, the SparsePipe framework can be effectively

partitioned for a heterogeneous GPU system. We outline the

details in the following subsection.

A. Experimental Setup

We have two available servers for the experiments. The first

server is with one Titan V GPU and three Titan XP GPUs.

The second one was equipped with four GeForce RTX 2080

Ti. The detailed GPU specification comparisons can be found

in Table I. All servers run a 64-bit Ubuntu system with CUDA

toolkit 10.2 and CuDNN v7.6.

To evaluate the efficiency of the proposed SparsePipe and

heterogeneous-aware partition algorithm, we used the classic

classification model VGG16 [13] with batch normalization

[30]. We trained and evaluated the developed models on the

ModelNet40 dataset [31], which contains 40 shape categories

of CAD models. We measured the average epoch time for

model training and its training and testing accuracy.

Implementation Details. For dense tensor representation,

we generated voxel grids for the shapes by calling function

TriangleMeshToV oxelGrid using Kaolin with efficient im-

plementations for 3D data preprocessing [32]. For sparse ten-

sor representation, we sampled point clouds from its triangle

meshes with TriangleMeshToPointCloud. We sampled up

to 16, 384 points for each sample and cached them for a faster

I/O. Then 4, 096 points are randomly selected from them. For

all the experiments, we trained the models for 90 epochs using

the SGD optimizer with a learning rate of 10−2, and set the

momentum to 0.9.

B. Comparison to Dense 3D Computation

We compared SparsePipe (Sparse DNN) against its dense

3D convolution version (referred to as Dense DNN). In Dense

DNN, the point cloud space was quantized into voxels, and

each voxel has a binary state, occupied or unoccupied by point

clouds. A fixed occupancy grid of size 32× 32× 32 and 50×

TABLE I: GPU Configurations of our servers.

Server 1st 2nd
GPU TITAN V ×1 TITAN XP ×3 RTX 2080 Ti ×4

Architecture Volta Pascal Turing
CUDA
Cores

5120 3840 4352

Boost
Clock (MHz)

1455 1770 1545

Single
Precision

(TFLOPS)
13.8 12.1 13.4

Memory
Size (GB)

12 12 11

Memory BW
(GB/sec)

653 547 352

50× 50 were chosen for the voxels. For the grid size of 32×
32×32, the average voxel occupancy ratio, which is calculated

as the ratio between the number of occupied voxels and the

total number of voxels in a point cloud, is around 7.6%. The

voxel occupancy ratio for 50 × 50 × 50 is around 2.6%. We

could not effectively execute higher resolution for Dense DNN

since it significantly increases the memory consumption and

causes an out-of-the-memory issue.

Memory Efficiency with Sparse DNN. Fig. 8 shows the

experimental results on ModelNet40 dataset with Sparse DNN

and Dense DNN using different resolutions. The training and

testing accuracy are presented. To make a fair comparison,

in SparsePipe, we quantized the sampled points and divided

the spanned space into the same voxel resolution of the dense

DNN. We observe that either for Dense DNN or Sparse DNN,

a higher voxel resolution could help increasing the testing

accuracy. This is intuitive because finer resolution can provide

more details in discriminating shapes. Notice that Dense DNN

can not conduct a higher resolution of 100 × 100 × 100 or

200× 200× 200 because of the large memory footprint. This

shows that Sparse DNN is memory friendly, allowing larger

input resolutions to achieve higher accuracy. Though at the

same resolution Sparse DNN achieves higher performance in

terms of accuracy compared to the Dense DNN, this variation

in accuracy is partly due to the quantization and sampling as

described in ”Implementation Details” Section IV-A.

Speed-ups with Point Sparsity. We explored and exploited

the point sparsity for accelerating the training of Sparse DNN.

Unlike Dense DNN where the computation is permanently

fixed once the model layers and resolutions are determined,

Sparse DNN can further achieve a faster training speed by

dropping a subset of points while not sacrificing too much

accuracy. To validate it, we introduced a dropout ratio θ
that uniformly sampled from [0, p] where p ≤ 1. Under

this concept, p = 0 means dropping all the points whereas

p = 1 keeps all points. We evaluated the model across varied

uniformity p ∈ {0.25, 0.5, 1})) as shown in Table II with two

different resolution experiments conducted, i.e., 32× 32× 32
and 50 × 50 × 50. This dropout ratio of θ will end up with

a reduced number of input points for training and testing

the model. For Dense DNN, since the point sparsity doesn’t

influence the computation or memory given a fixed resolution,

the result of p = 1 is shown in Table II. These experiments
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TABLE II: Performance evaluation with different random input dropouts for Sparse DNN at resolutions of 32× 32× 32 and

50 × 50 × 50. All modoels are evaluated and trained using single GPU or 4 GPUs with data parallelism. The speed-ups are

computed against a base model – the Dense DNN trained on single GPU – the D-1 (ref.). “D/S-p” denotes Dense/Sparse DNN

with a certain point sampling ratio p ∈ {0.25, 0.5, 1}. For Dense DNN, the convolution computation is conducted by densely

iterating every voxel in the 3D space. Instead, Sparse DNN conducts an efficient computation only on non-empty voxels thus

avoiding unnecessary computation on empty locations. The main conclusions are: Compared to Dense DNN, Sparse DNN 1)

has a faster training speed, 2) can further increase the training speed by exploiting more point sparsity, and 3) is memory

efficient that allows to feed the inputs of a large batch size.

1 GPU 4 GPUs
Resolution D/S-p D-1 (ref.) S-1 S-0.5 S-0.25 D-1 S-1 S-0.5 S-0.25

32× 32× 32
(Voxel Occupancy Ratio 7.6%)

Training Acc (%) 99.32 99.95 99.81 99.72 99.46 99.94 99.70 99.19
Testing Acc (%) 84.46 86.28 85.39 84.55 84.19 85.29 84.04 84.12

Epoch Time (sec.) 82.71 62.04 47.43 36.66 24.45 17.54 14.16 11.14
Speedup 1 1.33 1.74 2.26 3.38 4.72 5.84 7.42

Batch Size 128 256 256 512 128 256 256 512

50× 50× 50
(Voxel Occupancy Ratio 2.6%)

Training Acc (%) 99.34 99.88 99.82 99.63 99.36 99.93 99.66 99.25
Testing Acc (%) 86.78 87.61 87.41 86.93 87.18 87.80 87.52 87.00

Epoch Time (sec.) 314.94 129.63 99.70 71.43 82.05 35.11 27.62 20.37
Speedup 1 2.43 3.16 4.41 3.84 8.97 11.40 15.46

Batch Size 32 128 128 256 32 128 128 256
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Fig. 8: Compared to Dense DNN, Sparse DNN is significantly

less memory intensive. Sparse DNN can support a resolution

of 200×200×200 while Dense DNN is limited to 50×50×50.

This opens up the possibility of solving problems at larger

scale. Both models can achieve higher accuracy with a higher

resolution.

are conducted on 1 GPU or 4 GPUs with data parallelism.

Please note that, “data parallelelism” here refers to the naive

parallelism where the entire neural network replicates among

multiple GPUs. For SparsePipe, data parallel works the same

way as Dense DNN. It can be viewed as the DNN partitioned

into one stage replicated among multiple GPUs.

In Table II, the experiment conducting with Dense or Sparse

DNN using dropout probability p is abbreviated as D/S − p.

For Dense DNN, the convolution computation is conducted

by densely iterating every voxel in the 3D space. Instead,

Sparse DNN conducts an efficient computation only on non-

empty voxels thus avoiding unnecessary computation on empty

locations. Compared to the baseline model D− 1, we achieve

a speedup of 1.33 at the resolution of 32 × 32 × 32 and is

4.72× faster when training models with 4 GPUs. We also

demonstrate that: By dropping more points, our model remains

relatively stable on the accuracy while further achieving a

larger speedup (up to 7.42× faster compared to the model

D − 1 with p = 0.25).

We further choose to increase the input resolution of the

point cloud from 32× 32× 32 to 50× 50× 50, which allows

us to achieve a better accuracy. At a higher resolution, the

baseline D − 1 incurs a larger overhead on the computation,

while Sparse DNN S− 1 is faster demonstrated by a speedup

of 2.43 with single GPU training, and by that of 8.97 with

the 4-GPU training. Sparse DNN further achieves a 15.46×
speedup on 4 GPUs with point sparsity p = 0.25.

The memory requirements of SparsePipe (for the given

sparsity level of typical datasets) is much smaller compared to

Dense DNN that leverages the latest CUDA and CuDNN. The

batch size shown in Table II is the largest one that can fit into

a GPU memory either for dense or sparse model. As the table

shows, SparsePipe allows a larger batch size during training,

up to 512 compared to 128 for Dense DNN at the resolution

of 32×32×32, and up to 256 compared to 32 for Dense DNN

at the resolution of 50× 50× 50. In summary, Table II shows

that with Sparse DNN and point sparsity, the training process

can be accelerated significantly and the memory storage can

be efficiently utilized thus enabling higher resolution inputs to

achieve higher accuracy. We can further speed up our current

solution leveraging advanced techniques such as coalesced

memory access via block-based sparse convolutions [26].

C. Comparison of Parallel Training Strategies

The advantages of SparsePipe over the dense convolution

have been demonstrated in the previous section. We now

explore the impact of data parallelism (DP) with pipeline

model parallelism and heterogeneous aware pipeline model

partition (HETE-MP) on different number of GPUs across

two servers. The results are presented in Fig. 9. We take the

training time of the data parallel training (DP) as the baseline,

and compute the speedups of MP and HETE-MP. The voxel

resolution of 50× 50× 50 is fixed. The batch size is 64.

The training time per epoch has been reduced a lot in the

MP training, as shown in Fig. 9. Specifically, the speedups

obtained are consistently larger and vary from 1.33 (on eight

GPUs) to 2.27 (on six GPUs). SparsePipe with pipeline model
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TABLE III: Summary of GPU configurations, model split and stage assignment details of comparing HETE-MP with MP. A

split config of “4-1” means the model is split into 2 stages where the first stage is replicated among 4 GPUs and the second

stage on one GPU. The “Stage Assignment” lists the assigned GPUs for each stage.

#GPUs GPU Config MP/HETE-MP Split Config Stage Assignment

5 1 TitanV + 4 RTX MP 1-2-1-1 -
5 1 TitanV + 4 RTX HETE-MP 4-1 (4 RTX) (1 TitanV)

6 1 TitanV + 1 TitanXP + 4 RTX MP 4-1-1 -
6 1 TitanV + 1 TitanXP + 4 RTX HETE-MP 4-1-1 (4 RTX) (1 TitanV) (1 TitanXP)

7 1 TitanV + 2 TitanXP + 4 RTX MP 4-1-1-1 -
7 1 TitanV + 2 TitanXP + 4 RTX HETE-MP 6-1 (4 RTX + 2 TitanXP) (1 TitanV)

8 Server 1 + Server 2 MP 4-1-1-1-1 -
8 Server 1 + Server 2 HETE-MP 7-1 (4 RTX + 3 TitanXP) (1 TitanV)
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Fig. 9: Performance evaluation between naive data parallelism

(DP), pipeline model parallelism (MP) and heterogeneous

aware pipeline model partition (HETE-MP). The speedups

of MP and HETE-MP compared to DP are presented. The

evaluation is conducted with two servers. All models are

trained at the voxel resolution of size 50 × 50 × 50 and a

batch size of 64.

parallelism reduced the communication overhead via partition-

ing the model into several stages with some stages replicated

among multiple GPUs and the last stage on 1 GPU. The

benefit is that large fully-connected layers were not replicated,

thereby reducing communication overhead. Additionally, all

processors are busy with the pipelining process, avoiding the

GPU under-utilization.

We further demonstrated that HETE-MP can give better

partition of models by exploiting different GPU characteristics,

compared to MP which is with the assumption of homoge-

neous GPU processors across servers. To run these partitioning

algorithm, the bandwidth between two servers needs to be

specified in advance, which is measured with the iperf3 tool.

Compared to MP that gets a speedups of 1.33 − 2.27 over

DP, HETE-MP can further accelerate the training and achieve

higher speedups ranging from 2.41 to 3.11. For example, for

five GPUs with one Titan V and four RTX, the speedup

of HETE-MP is 3.11. Comapred to MP achieving 2.03×
speedup, HETE-MP is 1.53× faster. Similarly, on eight GPUs,

HETE-MP can obtain 1.98× speedup compared to MP with

a more load-balanced model partition.

We have shown that HETE-MP can run faster than MP

by considering the difference of GPU computational abili-

ties. Table III lists the difference of workload partition and

assignments between MP and HETE-MP on five to eight GPUs

across two servers in details. A split config of “4-1” means

the model is split into 2 stages with the first stage replicated

among 4 GPUs and the second stage on one GPU. The “Stage

Assignment” lists the assigned GPUs for each stage.

As presented in Table III, MP and HETE-MP could generate

different model split configurations. MP tends to split the

model into multiple stages while balancing the time spent on

each stage based on the layer costs obtained by SmartProfile

on certain GPU. HETE-MP partitions the model in a more

reasonable way by further taking the consideration of each

GPU’s computation ability. For example, when the number

of GPUs is eight, MP partitions the model into five stages,

with the first stage replicated among four GPUs with layers

0-23 and the rest stages with layers 24-52. For HETE-MP,

after considering the difference of computational ability of

GPUs, the model is partitioned into two stages with the first

stage replicated among seven GPUs (four RTXs and three

TitanXPs) with layers 0-23 and the second stage with layers

24-52 assigned to Titan V. The first stage takes most of

the computational load in this model as shown in Fig. 7

profiled on Titan XP with the second stage taking the rest

of the computational load. With the latter assigned to Titan

V, it would reduce the time spend on the second stage since

Titan V has the highest computational ability among the three

GPU types. Thus, the partition generated by HETE-MP can

make full usage of each GPU’s computational ability and

balance the workload among GPUs as much as possible.

This demonstrates the benefits of taking heterogeneity into

consideration, which balances the load among processors and

guarantees the maximum of resource utilization.

Discussions: Pipeline model parallelism outperforms data

parallelism, which is mainly due to the reduction of the

communication to synchronize the network parameter. Thus,

the pipeline model parallelism is more beneficial to models

with large parameter sizes (e.g, VGGNet). For models with

less parameters (e.g., ResNet), data parallelism is preferred.

Besides, models with branching architecture such as 3D-UNet

used for segmentation should avoid the current pipeline model

parallelism due to too much intermediate results (even greater

than the network parameters) needed to be communicated

among GPUs thus increasing the communication time. It is

promising to investigate the combination of branch neural

networks and pipeline model parallelism in the future.
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V. CONCLUSIONS

In this paper, we presented SparsePipe, an efficient and

asynchronous parallelism approach for handling 3D point

clouds that has a relatively small memory footprint as com-

pared to dense approaches. It utilizes generalized convolutions

with sparse tensor representation to build expressive high-

dimensional convolutional neural networks. SparsePipe has

reduced the communication overheads by integrating model

parallelism with data parallelism and processes mini-batches

in a pipelined fashion. Our heterogeneous-aware model parti-

tioning algorithm can automatically partition the model layers

among different processors and keeps the load as balanced

as possible. The experimental results have demonstrated that

SparsePipe obtained better performance on point cloud bench-

marks compared to the dense counterpart. In the meantime, it

achieved a larger training speed-up across multiple computing

nodes when compared to the data parallelism.
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